RESUMOEste trabalho propõe uma nova técnica para a maximização de margem, através do tratamento de dados. As várias abordagens de tratamento de dados serão utilizadas no treinamento do Perceptron Espanhol. As distâncias entre os vetores de suporte e a superfície de separação foram utilizadas como métrica para a avaliação da máxima margem. Os vetores de suporte são fornecidos através da Support Vector Machine (SVM), após treinamento com a base de dados sem tratamento. A base utilizada é sintética, linearmente separável, com duas classes, aleatória de distribuição normal. Os resultados sugerem que a nova técnica proporciona uma melhoria na margem gerada com o perceptron espanhol, quando o erro de treinamento é maior.Palavras-chave: Maximização de margens. Perceptron Espanhol. SVM.
NEURAL NETWORKS IN THE DATA PROCESSING FOR MAXIMIZING MARGINS ABSTRACTThis paper proposes a new technique for maximizing margin, through the processing of data. The various data processing approaches will be used in Spanish Perceptron training. The distances between the support vectors and the separation surface was used as a metric to evaluate the maximum margin. The support vectors are provided by the Support Vector Machine (SVM) after training database without treatment. The base used is synthetic linearly separable, with two classes, random normal distribution. The results suggest that the new technique provides an improvement in margin generated with Spanish Perceptron, when the training error is higher.