Mast cell chymase, a chymotrypsin-like neutral protease, can proteolyze HDL 3 . Here we studied the ability of rat and human chymase to proteolyze discoidal pre  -migrating reconstituted HDL particles (rHDLs) containing either apolipoprotein A-I (apoA-I) or apoA-II. Both chymases cleaved apoA-I in rHDL at identical sites, either at the N-terminus (Tyr 18 or Phe 33 ) or at the C-terminus (Phe 225 ), so generating three major truncated polypeptides that remained bound to the rHDL. The cleavage sites were independent of the size of the rHDL particles, but small particles were more susceptible to degradation than bigger ones. Chymase-induced truncation of apoA-I yielded functionally compromised rHDL with reduced ability to promote cellular cholesterol efflux. In sharp contrast to apoA-I, apoA-II was resistant to degradation. However, when apoA-II was present in rHDL that also contained apoA-I, it was degraded by chymase. We conclude that chymase reduces the ability of apoA-I in discoidal rHDL particles to induce cholesterol efflux by cleaving off either its amino-or carboxy-terminal portion. This observation supports the concept that limited extracellular proteolysis of apoA-I is one pathophysiologic mechanism leading to the generation and maintenance of foam cells in atherosclerotic lesions. Chymases are neutral proteases whose specificity is chymotrypsin-like: peptide bonds are cleaved on the carbonyl side of a ) aromatic residues with the order of preference Phe Ͼ Tyr ϾϾ Trp, and b ) the branched aliphatic amino acids Val, Ileu, and Leu (1). These enzymes are produced mainly or exclusively by mast cells, and are also found in mast cells of the human arterial intima, the site of atherogenesis (2). In atherosclerotic lesions, the mast cells are activated and release a fraction of their chymase-containing cytoplasmic secretory granules into their microenvironment, where chymase may act on extracellularly located substrates.Chymase of rat serosal mast cells (rat mast cell protease