Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug–drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
To define the conformation of apolipoprotein A-I in discoidal particles, the immunoreactivity of a series of epitopes distributed along the apoA-I sequence has been evaluated in lipid-free apoA-I and in lipid-bound form. To this end, reconstituted discoidal lipoproteins, here called LpA-I, and defined by number of apoA-I per particle (e.g., Lp2A-I), have been prepared with palmitoyloleoylphosphatidylcholine, cholesterol, and apoA-I. Four LpA-I have been obtained and studied: two in the Lp2A-I class, 7.8 and 9.6 nm in diameter, and two in the Lp3A-I class, 10.8 and 13.4 nm. The immunoreactivity of all the epitopes tested was significantly different in LpA-I particles compared to lipid-free apoA-I, demonstrating that binding to lipids produces a drastic change in apoA-I conformation. Specific domains in the primary sequence become highly exposed while others are masked. Although the variation in immunoreactivity of the epitopes between various LpA-I was not drastic, significant differences in the calculated ED50 values were observed for a number of antibodies in small versus large particles within each class (Lp2A-I or Lp3A-I), indicating that particle size can modulate apoA-I conformation. In addition, when the competition between pairs of mAbs was analyzed in order to understand the relative position of epitopes, highly significant differences were observed as a function of particle size within each class. In particular, the competition between mAbs recognizing epitopes in the central region of apoA-I was greater in the larger particles than in their small counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)
Aim: Inflammation and oxidative stress are now recognized to be two important contributing factors to the development of atherosclerosis (AS). NADPH oxidase-4 (Nox4)-derived reactive oxygen species (ROS), NF-κB and MAPK play crucial roles in these processes. Luteolin, a flavone rich in many plants, can interrupt the molecular expression and inhibit the progression of inflammation and oxidative stress. The present study was designed to test whether luteolin inhibits TNF-α-induced inflammation and oxidative stress in human umbilical vein endothelial cells (HUVECs) and identify some of the mechanisms underlying these effects.
Keywords: dasatinib, doxorubicin, ERK pathway, multidrug resistance, P-glycoprotein Abbreviations: MDR, multidrug resistance; P-gp, P-glycoprotein; DOX, doxorubicin; ERKextracellular signal-regulated kinase; P-ERK, phosphorylated extracellular signal-regulated kinase.Multidrug resistance (MDR) is one of the major obstacles to the efficiency of cancer chemotherapy, which often results from the overexpression of drug efflux transporters such as P-glycoprotein (P-gp). In the present study, we determined the effect of dasatinib which was approved for imatinib resistant chronic myelogenous leukemia (CML) and (Ph C ) acute lymphoblastic leukemia (ALL) treatment on P-gp-mediated MDR. Our results showed that dasatinib significantly increased the sensitivity of P-gp-overexpressing MCF-7/Adr cells to doxorubicin in MTT assays; thus lead to an enhanced cytotoxicity of doxorubicin in MCF-7/Adr cells. Additionally, dasatinib increased the intracellular accumulation, inhibited the efflux of doxorubicin in MCF-7/Adr cells, and significantly enhanced doxorubicin-induced apoptosis in MCF-7/Adr cells. Further studies showed that dasatinib altered the expression levels of mRNA, protein levels of P-gp, and the phosphorylation of signal-regulated kinase (ERK) both in time-dependent (before 24 h) and dose-dependent manners at concentrations that produced MDR reversals. In conclusion, dasatinib reverses P-gpmediated MDR by downregulating P-gp expression, which may be partly attributed to the inhibition of ERK pathway. Dasatinib may play an important role in circumventing MDR when combined with other conventional antineoplastic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.