The blood–brain barrier (BBB) is the most important obstacle to improving the clinical outcomes of diagnosis and therapy of glioblastoma. Thus, the development of a novel nanoplatform that can efficiently traverse the BBB and achieve both precise diagnosis and therapy is of great importance. Herein, an intelligent nanoplatform based on holo‐transferrin (holo‐Tf) with in situ growth of MnO2 nanocrystals is constructed via a reformative mild biomineralization process. Furthermore, protoporphyrin (ppIX), acting as a sonosensitizer, is then conjugated into holo‐Tf to obtain MnO2@Tf‐ppIX nanoparticles (TMP). Because of the functional inheritance of holo‐Tf during fabrication, TMP can effectively traverse the BBB for highly specific magnetic resonance (MR) imaging of orthotopic glioblastoma. Clear suppression of tumor growth in a C6 tumor xenograft model is achieved via sonodynamic therapy. Importantly, the experiments also indicate that the TMP nanoplatform has satisfactory biocompatibility and biosafety, which favors potential clinical translation.