Purpose: To examine mechanisms that determine long-term responses of B-RAF V600E melanoma cells to B-RAF inhibitors. Experimental Design: B-RAF V600E melanoma cells were exposed to the B-RAF inhibitor PLX4720 for prolonged periods to select for cells resistant to apoptosis induced by the inhibitor. The resultant cells were analyzed for activation of extracellular signal regulated kinase (ERK), MAP/ERK kinase (MEK), and Akt, and related signals. Their roles in survival of the cells were also examined.Results: B-RAF V600E melanoma cells selected for resistant to PLX4720-induced apoptosis retained the V600E mutation in B-RAF, and proliferated steadily in the presence of the inhibitor, albeit with slow growth rate. These cells displayed high levels of ERK activation, that is, at least in part, independent of the conventional RAF/MEK/ERK pathway, as MEK activation was low and inhibition of MEK did not significantly block activation of ERK. In contrast, extracellular signals appeared involved. This was associated with elevated activation of the phosphoinositide 3-kinase (PI3k)/Akt pathway and could be inhibited by serum starvation and inhibition of PI3k/Akt. Inhibition of MEK did not impact on survival of these cells, whereas serum starvation, inhibition of PI3K/Akt, and inhibition of ERK1/2 reduced their viability.Conclusions: These results indicate that sensitivity to induction of apoptosis may be a major determinant of long-term responses of B-RAF V600E melanomas to specific inhibitors and suggest that rebound melanoma growth after initial treatment with the inhibitors may not be responsive to MEK inhibitors, but may be susceptible to inhibition of the PI3k/Akt pathway.