Braking is a process which transform the kinetic energy of the rotor into heat energy. During the braking phase, the frictional heat generated at the interface rotor–pad can lead to high temperatures (> 600 oC). In long-term frequent use of braking, increased temperature causes disc distortions, heat cracks, and causes degradation of the pad material. This creates a risk in the reduction of rotor-pad interface friction and loss of brake performance under safe driving conditions. In this study, the thermal monitoring of the thermal spray coated rotor was investigated and the variation of the friction coefficient and wear related thickness were measured. In addition, changes in torque forces at increasing temperatures were also evaluated.