The determination of fracture toughness of aluminium alloy aviation parts, exposed to cyclic mechanical loading, is an important engineering issue. The service life and crack resistance of such unprotected metallic parts is limited under corrosive operating conditions. The resistance against fracture cracking and corrosion resistance can be increased by the surface coatings. The scientific research of fracture toughness of coated metallic parts is being carried out in a comprehensive way. In this research, fracture toughness behaviour of high velocity oxy-fuel (HVOF) spray coated and conventional hard chrome plated aluminium-zinc alloy parts were compared and the results are discussed. The fracture surfaces are investigated and fracture toughness values are calculated. Electron microscopy analysis revealed significant differences in crack growth morphology and toughness values. As a result, the fracture toughness value is higher in hard chrome plated parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.