“…Moreover, compared with other multivariate correlation methods (e.g., Pearson, Kendall's tau, Spearman's rho), copulas can obtain nonlinear central dependence and tail dependence in both symmetric and asymmetric forms ( Frey et al, 2001 ; Trivedi and Zimmer, 2007 ). Because of the flexibility of choosing marginal distributions, the copula-based approach allows complex dependence structures between discrete variables ( Huang et al, 2022 ; Seyedabrishami and Izadi, 2019 ; Rashidi and Mohammadian, 2016 ), continuous variables ( Sener et al, 2010 ; Wali et al, 2022 ; Zilko et al, 2016 ; Kuwano et al, 2011 ), and ordered variables ( Eluru et al, 2010 ; Laman et al, 2018 ; Wang et al, 2015 ). Only the copula approach allows such combinations with different types of marginal distributions ( Bhat and Eluru, 2009 ; Zhang et al, 2012 ; Habib et al, 2009 ; Spissu et al, 2009 ; Irannezhad et al, 2017 ; Nguyen et al, 2017 ; Rith et al, 2019 ; Shabanpour et al, 2017 ).…”