Geochemical characterization studies and batch leaching experiments were conducted to explore the effects of a CO2 + O2 leaching system on uranium (U) recovery from ores obtained from an eastern limb of Zinda Pir Anticline ore deposit in Pakistan. The mineralogy of the ore was identified by Electron Probe Micro-analyzer (EPMA) and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), showing that pitchblende is the main ore mineral. XRD was also used along with EPMA and SEM characterization data. Experimental results indicate that U mobility was readily facilitated in the CO2 + O2 system with Eh 284 mV and pH 6.24, and an 86% recovery rate of U3O8 was obtained. U speciation analysis implied the formation of UO2 (CO3)22− in the pregnant solution. The plausible mechanism may be attributed to the dissolved CO2 gas that forms carbonate/bicarbonate ion releasing oxidized U from the ore mineral. However, U recovery in the liquid phase was shown to decrease by higher U(VI) initial concentration, which may be due to the saturation of Fe adsorption capacity, as suggested by an increase in Fe concentration with increasing initial U(VI) concentration in the solid phase. However, further studies are needed to reveal the influencing mechanism of U(VI) initial concentration on U recovery in the solid phase. This study provides new insights on the feasibility and validity of the site application of U neutral in situ leaching.