The Simplex method was used to define atomic and universal meshes using the integral discretization technique for the Griffin-Hill-Wheeler-Hartree-Fock equations. This technique represents a basis set as an exponential set of the form:ai(k) = exp[AR,(k) + (i -l)AR(k)], i = 1, . . ., N For atoms, the minimum total energy criterion was employed. For the universal basis, three different procedures were tested: (a) defining the universal basis using information on the isolated atoms, (b) determining the universal R,(k) through atomic calculations and reoptimizing the AR(k) for different symmetries employing simultaneously a single atomic calculation as a reference point, and (c) optimizing the universal mesh using a statistical criterion such as the squares of the deviations of the total energy. The meshes obtained by the minimum total energy criterion or the squares of deviations of the total energy for the universal basis are accurate for the total energy but the weight functions are deficient in the valence region. Shifting the optimized R,(k) to RA(k) = R,(k) -AR(k), fixing Rh(k), and reoptimizing AR(k) for each symmetry species produces a better description of weight functions at the expense of a less accurate total energy. In general, no significant statistical difference was observed for the various universal bases generated by procedures (a) and (b) or by (c) provided the shift correction was made to the latter. Application of these bases to diatomic molecules (N,, CO, PI, CS) showed that the universal bases are as accurate as those optimized for atomic systems. If the bases are transferred from atoms to molecules, the shift corrections to the weight functions of the atoms are not useful in molecular calculations. The almost equivalent molecular properties and the good total energies show that the best basis for molecular calculations is that optimized by procedure (c).Key words: universal basis sets, integral discretization technique. On a fait appel a la mkthode Simplex utilisant la technique de la discretisation intdgrale des equations de Griffin-HillWheeler-Hartree-Fock pour dtfinir des mailles atomiques et universelles. Cette technique reprksente un ensemble de base sous la forme d'un ensemble exponentiel de la forme :Pour les atomes, on a employe le critere de I'energie totale minimale. Pour les bases universelles, on a vkrifie trois mkthodes diffkrentes : (a) en definissant la base universelle a I'aide d'information sur des atomes isoles; (0) en determinant un R,(k) universe1 a I'aide de calculs atomiques et en reoptimisant le AR(k) pour diverses symktries en employant simultanement un calcul atomique unique comme point de reference et (c) en optimisant la maille universelle l'aide d'un critere statistique comme les carres des deviations de 1'Cnergie totale. Les mailles obtenues par le critkre de I'energie totale minimale ou par les carrks des deviations de I'Cnergie totale pour les bases universelles sont prkcises pour l'energie totale; les fonctions ponderales presentent toutefois des deficiences da...