As it is always necessary to design a pipeline at high pressure (high density), pipelines are also exposed to ambient temperatures and are usually exposed to low temperatures. On the other hand, in the presence of water vapor (almost all natural gases have some water vapor), and more importantly, the presence of hydrocarbons causes hydrate crystals to form. In this work, the capacity of carbon dioxide hydrate storage in water in the presence of surfactants at different temperatures, pressures and concentrations of TBAC and CTAB additives was calculated and measured using induction time measurement. The results of experiments show that with increasing pressure and decreasing temperature the storage capacity of CO2 in hydrate increases. Addition of CTAB also dramatically increases the storage capacity, while increasing pressure has a greater impact on the storage capacity of carbon dioxide in the hydrate. The effect of TBAC and CTAB surfactant on the induction of hydrate formation and carbon dioxide storage capacity was investigated. Design Expert software was used to design the experiment. Finally, statistical analysis of the effective parameters on the time of induction of hydrate formation showed that TBAC can decrease the time of induction of hydrate formation compared to other additives. In investigation of the effect of variables on the storage capacity of carbon dioxide gas, it can be concluded that increasing the amount of CTAB surfactant and pressure has the most impact on the increase of carbon dioxide storage capacity compared.