2022
DOI: 10.34306/itsdi.v4i1.566
|View full text |Cite
|
Sign up to set email alerts
|

Application of Artificial Intelligence to the Development of Playing Ability in the Valorant Game

Abstract: From children to adults, everyone enjoys playing online games as a form of entertainment. Online games have a more popular market because they can meet other players worldwide connected to the internet. NPCs (players controlled by a computer system) are also available in online games as player substitutes or for skill practice. As a result, we have been interacting with artificial intelligence in the competition and our environment without realizing it. The game's AI (Artificial Intelligent) can offer an exper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 20 publications
0
1
0
Order By: Relevance
“…Valorant merupakan game dengan genre First Person Shooter (FPS) yang dikembangkan oleh Riot Games untuk sistem operasi Windows. permainan ini melibatkan dua tim yang terdiri dari lima pemain masing-masing dan setiap pemain diharuskan untuk memilih agen Valorant yang memiliki keterampilan unik yang menambah keasyikan dalam pertempuran [9]. Permainan ini juga menawarkan berbagai pilihan agen, senjata, mode permainan, dan peta yang dapat dimainkan.…”
Section: Aunclassified
“…Valorant merupakan game dengan genre First Person Shooter (FPS) yang dikembangkan oleh Riot Games untuk sistem operasi Windows. permainan ini melibatkan dua tim yang terdiri dari lima pemain masing-masing dan setiap pemain diharuskan untuk memilih agen Valorant yang memiliki keterampilan unik yang menambah keasyikan dalam pertempuran [9]. Permainan ini juga menawarkan berbagai pilihan agen, senjata, mode permainan, dan peta yang dapat dimainkan.…”
Section: Aunclassified
“…Purnamawati et al in 2020 conducted research to detect leaf diseases in rice plants using the decision tree algorithm with 100% accuracy results and using the KNN algorithm with 84% accuracy results [5]. Kusuma et al in 2022 also conducted research on the classification of leaf diseases in corn plants using several algorithms, one of the algorithms used was k-nearest neighbor (KNN) which obtained accuracy results of 93.8%, precision of 93.9%, and recall 93.8% [6]. Wahyuningtyas et al in 2022 conducted research on disease identification on coffee leaves using the Local Binary Pattern and Random Forest methods.…”
Section: Introductionmentioning
confidence: 99%