Proceedings of the 3rd International Conference on Applications of Intelligent Systems 2020
DOI: 10.1145/3378184.3378229
|View full text |Cite
|
Sign up to set email alerts
|

Application of data anonymization in Learning Analytics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 7 publications
0
3
0
1
Order By: Relevance
“…For example, techniques to anonymize geolocation data will differ from those for anonymizing usernames, and two platforms may generate different formats for the same data attribute. Third, automatically identifying sensitive attributes in a dataset is a complex problem, meaning that researchers need to be familiar with a dataset and its schema beforehand [13]. Several techniques have been proposed to address these challenges.…”
Section: B Anonymizationmentioning
confidence: 99%
See 1 more Smart Citation
“…For example, techniques to anonymize geolocation data will differ from those for anonymizing usernames, and two platforms may generate different formats for the same data attribute. Third, automatically identifying sensitive attributes in a dataset is a complex problem, meaning that researchers need to be familiar with a dataset and its schema beforehand [13]. Several techniques have been proposed to address these challenges.…”
Section: B Anonymizationmentioning
confidence: 99%
“…Finally, t-closeness [17] adds the property that the distribution of sensitive values has to be similar for each of these sets. Although previously proposed LA data management solutions include different anonymization strategies in their design [13], [18], there is no approach that generalizes to the diversity of formats and data types present on education platforms. We address this gap by proposing a desktop tool compatible with different data types and algorithms for anonymization.…”
Section: B Anonymizationmentioning
confidence: 99%
“…Também para dados médicos, em Lee et al (2017) é apresentado um modelo de preservação da utilidade e da privacidade baseado em k-anonimização e "h-ceiling" um método que limita a generalização de dados. Na área da educação, Chicaiza et al (2020) apresenta um estudo sobre análise de dados de aprendizagem usando k-anonimato e modelos de regressão linear para avaliar a utilidade dos dados. Em Santos et al (2020) a utilidade de dados educacionais k-anonimizados é analisada calculando estatísticas descritivas para vários valores de k. Estudos recentes introduzem modelos de aprendizagem automática para garantir a privacidade dos dados e avaliar a sua utilidade (Eicher et al, 2020;Esquivel-Quirós et al, 2019).…”
Section: Trabalho Relacionadounclassified
“…Data privacy management is an essential part of ethical LA practice. There is a growing base of research on the measurement and mitigation of privacy risks to address ethical challenges presented by the collection and use of learner data for analytics (Chicaiza et al., 2020; Corrin et al., 2019; Drachsler & Greller, 2016; Ferguson, 2019; Gursoy et al., 2017; Hoel & Chen, 2016; Khalil & Ebner, 2016; Machado et al., 2019; Pardo & Siemens, 2014; Steiner et al., 2016). There is also some work addressing the cross‐disciplinary nature of learning analytics, including privacy concerns (eg, Teasley, 2019).…”
Section: Introductionmentioning
confidence: 99%