Abstract:The gender recognition is essential and critical for many applications in the commercial domains such as applications of human-computer interaction and computer-aided physiological or psychological analysis, since it contains a wide range of information regarding the characteristics difference between male and female. Some have proposed various approaches for automatic gender classification using the features derived from human bodies and/or behaviors. First, this paper introduces the challenge and application of gender classification research. Then, the development and framework of gender classification are described. We compare these state-of-the-art approaches, including vision-based methods, biological information-based methods, and social network informationbased methods, to provide a comprehensive review of gender classification research. Next we highlight the strength and discuss the limitation of each method. Finally, this review also discusses several promising applications for future work.