This paper proposes the Novel Differential Evolution (NDE) method for solving the environmental economic hydrothermal system dispatch (EEHTSD) problem with the aim to reduce electricity generation fuel costs and emissions of thermal units. The EEHTSD problem is constrained by limitations on generations, active power balance, and amount of available water. NDE applies two modified techniques. The first one is modified mutation, which is used to balance global and local search. The second one is modified selection, which is used to keep the best solutions. When performing this modified selection, the proposed method completely reduces the impact of crossover by setting it to one. Moreover, the task of tuning this factor can be canceled. Original Differential Evolution (ODE), ODE with the first modification (MMDE), and ODE with the second modification (MSDE), and NDE were tested on two different hydrothermal systems for comparison and evaluation purposes. The performance of NDE was also compared to existing methods. It was indicated that the proposed NDE is a very promising method for solving the EEHTSD problem.