Onsite wastewater treatment systems (OWTSs), although essential for managing domestic sewage in areas without centralized sewerage treatment plants, often release phosphorus (P) into the environment due to inadequate treatment. This unregulated P discharge exacerbates water quality degradation and jeopardizes aquatic habitats and human health. Among different treatment technologies, electrocoagulation (EC) demonstrates considerable potential for addressing this challenge by efficiently removing P from OWTSs and thus protecting water resources and ecological integrity. Through electrochemical reactions, EC destabilizes and aggregates P-bearing particles, facilitating their removal through precipitation. Compared to conventional treatment approaches, i.e., chemical and biological methods, EC offers several advantages, including high efficiency, minimal chemical usage, and adaptability to varying wastewater compositions. This review underscores the urgent need for mitigating P discharge from OWTSs and the efficacy of EC as a sustainable solution for P removal, offering insights into its mechanisms, reactor design considerations, important operational factors, performance, and potential applications in OWTSs as well as providing future research directions.