We propose a modified MgO protective layer for alternating current plasma display panels. The modified MgO protective layer of the panel tested here has a structure that incorporates silica-coated Au nanorods (NRs), leading to localized surface plasmon resonance (LSPR) in the near-infrared (IR) region. The silica-coated Au NRs were synthesized by a simple chemical method and inserted into an MgO protective layer using an air-spray method. The operating voltage of the proposed structure was decreased by 10 V. The luminance and luminous efficacy of the test panel part with the silica-coated Au NRs both increased by about 15%. According to the measured results of the IR response time, the sustain discharge time lag was reduced. In addition, by inserting the silica-coated Au NRs into the MgO protective layer, a decrease of the IR emission proceeding from the plasma discharge was acquired. Finally, we investigated the LSPR effect of the silica-coated Au NRs in a simulation with a finite-difference time domain method.