2022
DOI: 10.1063/5.0082629
|View full text |Cite
|
Sign up to set email alerts
|

Application of machine learning methods in photovoltaic output power prediction: A review

Abstract: As the proportion of photovoltaic (PV) power generation rapidly increases, accurate PV output power prediction becomes more crucial to energy efficiency and renewable energy production. There are numerous approaches for PV output power prediction. Many researchers have previously summarized PV output power prediction from different angles. However, there are relatively few studies that use machine learning methods as a means to conduct a separate review of PV output power prediction. This review classifies mac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(8 citation statements)
references
References 167 publications
0
6
0
2
Order By: Relevance
“…In essence, the intricate web of interdependencies necessitates a focused examination of weather data to enhance the precision of PV power generation predictions. [ 29 ] In this article, the primary objective is to categorize ML methods based on various perspectives and deliver a systematic and critical overview of their applications in recent PV power output scenarios, specifically focusing on temporal and spatial prediction scales. Notably, the authors observe that ANNs and SVMs emerge as the predominant choices among the diverse ML methods.…”
Section: Literature Reviewmentioning
confidence: 99%
“…In essence, the intricate web of interdependencies necessitates a focused examination of weather data to enhance the precision of PV power generation predictions. [ 29 ] In this article, the primary objective is to categorize ML methods based on various perspectives and deliver a systematic and critical overview of their applications in recent PV power output scenarios, specifically focusing on temporal and spatial prediction scales. Notably, the authors observe that ANNs and SVMs emerge as the predominant choices among the diverse ML methods.…”
Section: Literature Reviewmentioning
confidence: 99%
“…existem relativamente poucos estudos que usam métodos de aprendizado de máquina como um meio de realizar uma revisão separada da previsão de potência de saída fotovoltaica. Zhang et al (2022).…”
Section: Modelos Estatísticos E Matemáticos De Simulaçãounclassified
“…imagens de satélite) para produzir melhores resultados de previsão a longo prazo. Reforça-se que é preciso desenvolver melhores algoritmos de otimização para otimizar o método de aprendizado de máquina principalmente quando se fala em integrar modelos de previsão com várias tecnologias para melhorar o desempenho da previsão de potência de saída fotovoltaica, ou seja, a continuidade de estudos na área é necessário Zhang et al (2022).…”
Section: Modelos Estatísticos E Matemáticos De Simulaçãounclassified
“…developed a deep learning approach (RNN-LSTM) to forecast the PV output power of the considered solar farms [27]. performed a review of machine learning methods from different perspectives and provided a critical review of machine learning models for recent PV output power applications [28]. Yu et al (2022) developed a convolutional long short-term memory network (CLSTM) prediction model optimized by adaptive mutation particle swarm optimization for solar power generation forecasting [29].…”
Section: Plos Onementioning
confidence: 99%