--Distillation columns are widely used in chemical industry as unit operation and required advance process control because it has multi input multi output (MIMO) or multi-variable system, which is hard to be controlled. Model predictive control (MPC) is one of alternative controller developed for MIMO system due to loops interaction to be controlled. This study aimed to obtain dynamic model of process control on a distillation column using MPC, and to get the optimum performance of MPC controller. Process control in distillation columns performed by simulating the dynamic models of distillation columns by UNISIM R390.1 software. The optimization process was carried out by tuning the MPC controller parameters such as sampling time (T s = 1 -240 s), prediction horizon (P = 1-400), and the control horizon (M=1-400). The comparison between the performance of MPC and PI controller is presented and Integral Absolut Error (IAE) was used as comparison parameter. The results indicate that the performance of MPC was better than PI controller for set point change 0.95 to 0.94 on distillate product composition using a modified model 1 with IAE 0.0584 for MPC controller and 0.0782 for PI controller.
Keywords: model predictive control, multivariable, tuning, distillation columnAbstrak --Kolom distilasi banyak digunakan dalam industri kimia sebagai unit operasi dan memerlukan proses kontrol terbaru karena memiliki system multi-input multi output yang (MIMO) atau sistem multi-variabel, yang sulit untuk dikendalikan. Model kontrol prediktif (MPC) adalah salah satu pengendali alternatif yang dikembangkan untuk sistem MIMO karena interaksi loop yang harus dikendalikan. Penelitian ini bertujuan untuk mendapatkan model dinamik dari proses kontrol pada kolom distilasi menggunakan MPC serta untuk mendapatkan kinerja yang optimal dari pengontrol MPC. Pengendalian proses dalam kolom distilasi dilakukan dengan mensimulasikan model dinamis kolom distilasi oleh perangkat lunak UNISIM R390.1. Proses optimasi dilakukan dengan penalaan parameter pengontrol MPC seperti waktu sampling (Ts = 1-240 s), prediksi horizon (P = 1-400), dan horison kontrol (M = 1-400). Perbandingan antara kinerja pengontrol MPC dan PI disajikan dan Kesalahan Integral Absolut (IAE) digunakan sebagai parameter pembanding. Hasil penelitian menunjukkan bahwa kinerja pengontrol MPC lebih baik dari pengontrol PI untuk perubahan set point 0,95-0,94 pada komposisi produk distilat menggunakan model 1 yang telah dimodifikasi dengan IAE 0,0584 untuk pengontrol MPC dan 0,0782 untuk pengontrol PI.
Kata kunci: model kontrol prediktif, multivariable, penalaan, kolom distilasi
INTRODUCTIONThe development of more advanced industries has an impact on the increasing demand for energy supplies. Based on Ministry data center energy and mineral resources, the need for energy industry about 33% in 2014 out of a total final energy demand in Indonesia and is projected to continue to grow (DEN RI, 2014). Increasing energy consumption led to the depletion of national energy reserves th...