The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT-IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pH pzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L À1 , pH ¼ 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate-sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.