) summit eruptive activity at Kilauea Volcano is characterized by explosive degassing bursts accompanied by very long period (VLP) seismic signals. We model the source mechanisms of VLP signals in the 10-50 s band using data recorded for 15 bursts with a 10-station broadband network deployed in the summit caldera. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. The VLP signals associated with the bursts originate in a source region ∼1 km below the eastern perimeter of Halemaumau pit crater. The observed waveforms are well explained by the combination of a volumetric component and a vertical single force component. For the volumetric component, several source geometries are obtained which equally explain the observed waveforms. These geometries include (1) a pipe dipping 64°t o the northeast; (2) two intersecting cracks including an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65°to the east; (3) a pipe dipping 58°to the northeast, intersecting a crack dipping 48°to the westsouthwest; and (4) a pipe dipping 57°to the northeast, intersecting a pipe dipping 58°to the west-southwest. Using the dual-crack model as reference, the largest volume change obtained among the 15 bursts is ∼24,400 m 3 , and the maximum amplitude (peak to peak) of the force is ∼20 GN. Each burst is marked by a similar sequence of deflation and inflation, trailed by decaying oscillations of the volumetric source. The vertical force is initially upward, synchronous with source deflation, then downward, synchronous with source reinflation, followed by oscillations with polarity opposite to the volumetric oscillations. This combination of force and volume change is attributed to pressure and momentum changes induced during a fluid dynamic source mechanism involving the ascent, expansion, and burst of a large slug of gas within the upper ∼150 m of the magma conduit. As the slug expands upon approach to the surface and more liquid becomes wall supported by viscous shear forces, the pressure below the slug decreases, inducing conduit deflation and an upward force on the Earth. The final rapid slug expansion and burst stimulate VLP and LP oscillations of the conduit system, which slowly decay due to viscous dissipation and elastic radiation. Consideration of the fluid dynamic arguments leads us to prefer the dual-crack VLP source model as it is the only candidate model capable of producing plausible values of length scales and pressure changes. The magnitudes of the vertical forces observed in the 15 bursts appear consistent with slug masses of 10 4 to 10 6 kg.Citation: Chouet, B. A., P. B. Dawson, M. R. James, and S. J. Lane (2010), Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10-50 s band,