2007
DOI: 10.1016/j.jhydrol.2006.06.015
|View full text |Cite
|
Sign up to set email alerts
|

Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
39
0
5

Year Published

2009
2009
2016
2016

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 96 publications
(51 citation statements)
references
References 54 publications
3
39
0
5
Order By: Relevance
“…In this way, high correlations can be achieved by mediocre or poor models. Similar conclusions were obtained in the forecasting of different kinds of time variables [44][45][46][47][48].…”
Section: Discussionsupporting
confidence: 80%
“…In this way, high correlations can be achieved by mediocre or poor models. Similar conclusions were obtained in the forecasting of different kinds of time variables [44][45][46][47][48].…”
Section: Discussionsupporting
confidence: 80%
“…In fact, continuous measurements of precipitation and stream discharge can be more easily obtained without cost compared to continuous measurements of soil characteristics, initial soil moisture, infiltration, and groundwater characteristics. Therefore, a 'black box' approach that operates based only on the first set measurements can be much more suitable for operational forecasting purposes than a physical based model that also requires the latter set of measurements (Tokar and Johnson 1999;Inmaculada and Maria 2007).…”
Section: Introductionmentioning
confidence: 99%
“…De entre os vários métodos de aprendizagem (calibração e validação) das ANNs, no presente estudo foi utilizado o algoritmo de cálculo de retro-propagação do erro (Pulido-Calvo e Portela, 2007). A aprendizagem por retro-propagação do erro consiste num algoritmo iterativo desenvolvido para resolver sistemas de equações lineares aplicado a redes neuronais com três ou mais camadas e que implementa o sistema de cálculo sucessivo das derivadas parciais numa direcção contrária à de propagação normal da informação através da rede (Rumelhart et al, 1986 O sobre ajustamento do modelo ocorre quando o erro referente ao subconjunto [CSS] é muito reduzido mas aumenta ao serem apresentados novos dados à rede.…”
Section: Redes Neuronais -Procedimento Geralunclassified