An analysis of droughts in mainland Portugal based on monthly precipitation data, from September 1910 to October 2004, in 144 rain gages distributed uniformly over the country is presented. The drought events were characterized by means of the Standardized Precipitation Index (SPI) applied to different time scales (1, 6, and 12 consecutive months and 6 months from April to September and 12 months from October to September). To assess spatial and temporal patterns of droughts, a principal component analysis (PCA) and K‐means clustering (KMC) were applied to the SPI series. In this way, three different and spatially well‐defined regions with different temporal evolution of droughts were identified (north, central, and south regions of Portugal). A spectral analysis of the SPI patterns obtained with principal component analysis and clusters analysis, using the fast Fourier transform algorithm (FFT), showed that there is a manifest 3.6‐year cycle in the SPI pattern in the south of Portugal and evident 2.4‐year and 13.4‐year cycles in the north of Portugal. The observation of the drought periods supports the occurrence of more frequent cycles of dry events in the south (droughts from moderate to extreme approximately every 3.6 years) than in the north (droughts from severe to extreme approximately every 13.4 years). These results suggest a much stronger immediate influence of the NAO in the south than in the north of Portugal, although these relations remain a challenging task.
[1] This study examines the effects of a large dam on hydrological droughts in the transboundary Tagus River, central Spain and Portugal. The magnitude and duration of droughts are analyzed by comparing a monthly drought index calculated for the flow series upstream and downstream of the Alcántara reservoir. The dam was built in 1969, and the reservoir is the second largest in Europe (3,162 hm 3 ). Water management in the area is complex because of large seasonal and interannual variability in the flow regime, which is characteristic of Mediterranean environments. This paper demonstrates that, as a result of exploitation of the Alcántara reservoir, (1) during periods of water scarcity, the releases in winter and spring are reduced dramatically and the magnitude and duration of summer low flow show a slight increase and (2) the nature of droughts along the Tagus river basin downstream of the dam has shown severe changes since construction of the dam. In fact, during the predam period , droughts were longer and more intense in the Spanish part of the basin than that in the Portuguese part. Since the construction of the Alcántara dam, however, the Portuguese part of the basin has experienced more severe droughts than did the upstream part in terms of both magnitude and duration.
This study investigated the frequency of droughts for the period September 1910 to October 2004 in mainland Portugal, based on monthly precipitation data from 144 rain gauges distributed across the country. The drought events were characterized using the standardized precipitation index (SPI) applied to time scales of 1, 3, 6 and 12 consecutive months. Based on the SPI time scale series a regional frequency analysis of drought magnitudes was undertaken using two approaches: annual maximum series (AMS) and partial duration series (PDS). Three spatially defined regions (north, central and south) were identified by cluster analysis and analyzed for homogeneity. Maps of drought magnitude were developed using a kriging technique for several return periods. Similar uniform spatial patterns were found throughout the country using the AMS and PDS approaches. For several SPI time scales a comparison of the observed and estimated maximum magnitude (269-year empirical return period) showed that the AMS combined with the selected probability distribution models (Pearson type III, general Pareto and Kappa) provided better results than the PDS approach combined with the same models. A general and simplified characterization of drought duration revealed a relatively uniform pattern of droughts events across the country.
Many riparian ecosystems in Mediterranean Europe are affected by land use and flow alteration by dams. We focused on understanding how these stressors and their components affect riparian forests in the region. We asked the following questions: (1) Are there well‐defined, responsive riparian guilds? (2) Do dam‐induced streamflows determine abundance and distribution of riparian guilds? (3) What are the main drivers governing composition and cover of riparian guilds in regulated rivers? We inventoried the cover of riparian woody species in free‐flowing rivers and downstream of dams. We performed a cluster analysis and ordination to derive riparian guilds, using abundance data from 66 riparian woody species and 26 functional plant traits. We used a reduced set of principal components for the environment, land use and hydrology, and general linear modelling to explore the effect of these factors (separately and combined) on riparian guilds. We found that: (1) four dominant guilds are responsive to disturbance in southwestern European streams, namely the obligate riparian, water‐stress tolerant, deciduous competitive and Mediterranean evergreen guilds; (2) a set of land use and hydrological variables differentially affect the diverse co‐occurring riparian guilds; (3) frequency and duration of high flow pulses and the low‐flow conditions were major drivers of change in landscapes dominated by intensive agriculture and forestry; (4) storage reservoirs reduced the cover of obligate riparian and Mediterranean evergreen guilds, and increased the abundance of water‐stress tolerant and deciduous competitive guilds, while run‐of‐river dams, having limited water storage, reduced both obligate and deciduous competitive guilds. Synthesis and applications. Future research in southwestern Europe should address the resilience of riparian guilds and the effects of interacting landscape factors and stressors on guild distribution. Streamflow regulations downstream of reservoirs should focus on specific flow components, namely the magnitude of flows, and frequency and duration of extreme flow events. For successful mitigation of the dam‐induced effects on riparian vegetation, river management plans must incorporate the environmental and land use site‐specific contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.