2018
DOI: 10.1515/jag-2017-0017
|View full text |Cite
|
Sign up to set email alerts
|

Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt

Abstract: Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 18 publications
0
3
0
1
Order By: Relevance
“…Through the years many interpolation methods have been involved in generating conversion surfaces (in local and regional scales) enabling transition between geometric and physical heights, e.g., polynomial regression (Borowski and Banaś, 2019;Gucek and Bašić, 2009;Kim et al, 2018;Zhong, 1997), neural networks (Aky-ilmaz et al, 2009;Kaloop et al, 2021), geographically weighted regression (Dawod and Abdel-Aziz, 2020), kriging (Ligas and Szombara, 2018;Orejuela et al, 2021), least-squares collocation (LSC) (You, 2006), Inverse Distance Weighting (IDW) (Radanović and Bašić, 2018) to mention only a few. Very often, conversion surfaces take the form of corrector surfaces due to the use of global geopotential models or gravimetric models generated prior to eliminating inconsistencies by fitting to GNSS/levelling data (Elshambaky, 2018;You, 2006).…”
Section: Introductionmentioning
confidence: 99%
“…Through the years many interpolation methods have been involved in generating conversion surfaces (in local and regional scales) enabling transition between geometric and physical heights, e.g., polynomial regression (Borowski and Banaś, 2019;Gucek and Bašić, 2009;Kim et al, 2018;Zhong, 1997), neural networks (Aky-ilmaz et al, 2009;Kaloop et al, 2021), geographically weighted regression (Dawod and Abdel-Aziz, 2020), kriging (Ligas and Szombara, 2018;Orejuela et al, 2021), least-squares collocation (LSC) (You, 2006), Inverse Distance Weighting (IDW) (Radanović and Bašić, 2018) to mention only a few. Very often, conversion surfaces take the form of corrector surfaces due to the use of global geopotential models or gravimetric models generated prior to eliminating inconsistencies by fitting to GNSS/levelling data (Elshambaky, 2018;You, 2006).…”
Section: Introductionmentioning
confidence: 99%
“…2. Elshambaky подтвердил, что многослойная нейронная сеть с прямой связью с двумя нейронами является наиболее точной из исследованных методик преобразования [6]. Albayrak сообщил, что модель геоида, идентифицированная с помощью ИНС, кажется более надежной по сравнению с моделью, рассчитанной с использованием традиционных методов интерполяции [7].…”
Section: рис 1 связь между высотами геодезической ортометрической unclassified
“…Besides, Mohammed et al (2015), Wang et al (2016), Kim and Kim (2015), and Barrile et al (2016) applied ANN to predict GPS positioning, GPS satellite clock bias, IGS real time service corrections, and displacement in tectonically active areas, respectively. Furthermore, it has been used for geodetic coordinates' transformation (Elshambaky et al 2018, Ziggah et al 2016b), a corrector surface determination for global geopotential model (Elshambaky 2018), planimetric coordinates' transformation (Ziggah et al 2016a), and Geometrical Dilution of Precision (GDOP) approximation for improving GPS accuracy , Azami et al 2012, Chien-Sheng and Szu-Lin 2010, Jwo and Lai 2006, Azami and Sanei 2013, Azarbad et al 2014, Azami et al 2016. The general insight gathered from these previous works indicate that ANN is suitable for numerous geodetic applications.…”
Section: Introductionmentioning
confidence: 99%