Issu ed by Sa n dia Na t ion a l La bor a t or ies, oper a t ed for t h e Un it ed St a t es Depa r t m en t of E n er gy by Sa n dia Cor por a t ion .
NOTICE:Th is r epor t wa s pr epa r ed a s a n a ccou n t of wor k spon sor ed by a n a gen cy of t h e Un it ed St a t es Gover n m en t . Neit h er t h e Un it ed St a t es Gover n m en t , n or a n y a gen cy t h er eof, n or a n y of t h eir em ployees, n or a n y of t h eir con t r a ct or s, su bcon t r a ct or s, or t h eir em ployees, m a ke a n y wa r r a n t y, expr ess or im plied, or a ssu m e a n y lega l lia bilit y or r espon sibilit y for t h e a ccu r a cy, com plet en ess, or u sefu ln ess of a n y in for m a t ion , a ppa r a t u s, pr odu ct , or pr ocess disclosed, or r epr esen t t h a t it s u se wou ld n ot in fr in ge pr iva t ely own ed r igh t s. Refer en ce h er ein t o a n y specific com m er cia l pr odu ct , pr ocess, or ser vice by t r a de n a m e, t r a dem a r k, m a n u fa ct u r er, or ot h er wise, does n ot n ecessa r ily con st it u t e or im ply it s en dor sem en t , r ecom m en da t ion , or favor in g by t h e Un it ed St a t es Gover n m en t , a n y a gen cy t h er eof, or a n y of t h eir con t r a ct or s or su bcon t r a ct or s. Th e views a n d opin ion s expr essed h er ein do n ot n ecessa r ily st a t e or r eflect t h ose of t h e Un it ed St a t es Gover n m en t , a n y a gen cy t h er eof, or a n y of t h eir con t r a ct or s. P r in t ed in t h e Un it ed St a t es of Am er ica . Th is r epor t h a s been r epr odu ced dir ect ly fr om t h e best ava ila ble copy.Ava ila ble t o DOE a n d DOE con t r a ct or s fr om U.S. Depa r t m en t of E n er gy Office of Scien t ific a n d or der s@n t is.fedwor ld.gov On lin e or der in g: h t t p://www.n t is.gov/h elp/or der m et h ods.a sp?loc=7-4-0#on lin e
DE P A R T M EN T OF E NEfficient uncertainty quantification methodologies for high-dimensional climate land models Khachik Sargsyan, Cosmin Safta, Robert Berry, Jaideep Ray, Bert Debusschere, Habib Najm Sandia National Laboratories, Livermore, CA {ksargsy,csafta,rdberry,jairay,bjdebus,hnnajm}@sandia.gov
AbstractIn this report, we proposed, examined and implemented approaches for performing efficient uncertainty quantification (UQ) in climate land models. Specifically, we applied Bayesian compressive sensing framework to a polynomial chaos spectral expansions, enhanced it with an iterative algorithm of basis reduction, and investigated the results on test models as well as on the community land model (CLM). Furthermore, we discussed construction of efficient quadrature rules for forward propagation of uncertainties from high-dimensional, constrained input space to output quantities of interest. The work lays grounds for efficient forward UQ for high-dimensional, strongly non-linear and computationally costly climate models. Moreover, to investigate parameter inference approaches, we have applied two variants of the Markov chain Monte Carlo (MCMC) method to a soil moisture dynamics submodel of the CLM. The ev...