Summary This work addresses the calibration of the distributed rainfall-runoff model LIS-FLOOD and, in particular, the realistic quantification of parameter uncertainty and its effect on the prediction of river discharges for large European catchments. LISFLOOD is driven by meteorological input data and simulates river discharge in large drainage basins as a function of spatial information on topography, soils and land cover. Even though LISFLOOD is physically based to a certain extent, some processes are only represented in a lumped conceptual way. As a result, some parameters lack physical basis and cannot be directly inferred from quantities that can be measured. In the current LISFLOOD version five parameters need to be determined by calibration. We employ the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimisation algorithm to automatically calibrate the model against daily discharge observations. The resulting posterior parameter distribution reflects the uncertainty about the model parameters after taking into account the discharge observations, and forms the basis for making probabilistic flow predictions. To overcome the computational burden the optimisation has been implemented using parallel computing. As an illustrative example, we demonstrate the methodology for the Meuse catchment upstream of Borgharen, covering approximately 21,000 km 2 . Results demonstrate the capabilities of the SCEM-UA algorithm to efficiently evolve to the target posterior distribution and to identify, except for the lower groundwater zone time constant, the LISFLOOD calibration parameters using daily discharge observations. It should be noted that the posterior parameter distributions are based on the assumption of independent errors. Analysis of the residuals revealed there is a strong evidence to reject this assumption. This will impact on the parameter posterior distributions and also lead to underestimation of the prediction limits. ª KEYWORDS
Operational flood forecasting requires that accurate estimates of the uncertainty associated with modelgenerated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather Service for deterministic streamflow forecasting. The approach, the simultaneous optimization and data assimilation method (SODA), uses an ensemble Kalman filter (EnKF) for recursive state estimation allowing for treatment of streamflow data error, model structural error, and parameter uncertainty, while enabling implementation of the Sacramento model without major modification to its current structural form. Model parameters are estimated in batch using the shuffled complex evolution metropolis stochasticensemble optimization approach (SCEM-UA). The SODA approach was implemented using parallel computing to handle the increased computational requirements. Studies using data from the Leaf River, Mississippi, indicate that forecast performance improvements on the order of 30% to 50% can be realized even with a suboptimal implementation of the filter. Further, the SODA parameter estimates appear to be less biased, which may increase the prospects for finding useful regionalization relationships.
BackgroundSeveral decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford's HIVdb) to predict virological outcome at 12, 24, and 48 weeks.Methodology/Principal FindingsIncluded were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was available at the time of changing treatment with at least one follow-up viral load measurement. Genotypic susceptibility scores for the active regimens were calculated using scores defined by each interpretation system. Using logistic regression, we determined the association between the genotypic susceptibility score and proportion of TCEs having an undetectable viral load (<50 copies/ml) at 12 (8–16) weeks (2152 TCEs), 24 (16–32) weeks (2570 TCEs), and 48 (44–52) weeks (1083 TCEs). The Area under the ROC curve was calculated using a 10-fold cross-validation to compare the different interpretation systems regarding the sensitivity and specificity for predicting undetectable viral load. The mean genotypic susceptibility score of the systems was slightly smaller for HIVdb, with 1.92±1.17, compared to Rega and ANRS, with 2.22±1.09 and 2.23±1.05, respectively. However, similar odds ratio's were found for the association between each-unit increase in genotypic susceptibility score and undetectable viral load at week 12; 1.6 [95% confidence interval 1.5–1.7] for HIVdb, 1.7 [1.5–1.8] for ANRS, and 1.7 [1.9–1.6] for Rega. Odds ratio's increased over time, but remained comparable (odds ratio's ranging between 1.9–2.1 at 24 weeks and 1.9–2.2 at 48 weeks). The Area under the curve of the ROC did not differ between the systems at all time points; p = 0.60 at week 12, p = 0.71 at week 24, and p = 0.97 at week 48.Conclusions/SignificanceThree commonly used HIV drug resistance interpretation systems ANRS, Rega and HIVdb predict virological response at 12, 24, and 48 weeks, after change of treatment to the same extent.
Parameter estimation or model calibration is a common problem in many areas of process modeling, both in on-line applications such as real-time flood forecasting, and in off-line applications such as the modeling of reaction kinetics and phase equilibrium. The goal is to determine values of model parameters that provide the best fit to measured data, generally based on some type of least-squares or maximum likelihood criterion. Usually, this requires the solution of a non-linear and frequently non-convex optimization problem. In this paper we describe a user-friendly, computationally efficient parallel implementation of the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm for stochastic estimation of parameters in environmental models. Our parallel implementation takes better advantage of the computational power of a distributed computer system. Three case studies of increasing complexity demonstrate that parallel parameter estimation results in a considerable time savings when compared with traditional sequential optimization runs. The proposed method therefore provides an ideal means to solve complex optimization problems. r
BackgroundIn HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and medical doctors. Therefore there is an urgent need for a tool that partially automates this process and is able to retrieve relations between drugs and virus mutations from literature.ResultsIn this work we present a novel method to extract and combine relationships between HIV drugs and mutations in viral genomes. Our extraction method is based on natural language processing (NLP) which produces grammatical relations and applies a set of rules to these relations. We applied our method to a relevant set of PubMed abstracts and obtained 2,434 extracted relations with an estimated performance of 84% for F-score. We then combined the extracted relations using logistic regression to generate resistance values for each
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.