2011 IEEE International Conference on Mechatronics and Automation 2011
DOI: 10.1109/icma.2011.5986341
|View full text |Cite
|
Sign up to set email alerts
|

Application of Particle Filtering Technique for sensor fusion in mobile robotics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 12 publications
0
3
0
1
Order By: Relevance
“…Multi-sensor fusion can be used for more accurate perception, combining information from multiple sensors (Yeong et al, 2021). Algorithms such as Kalman filter (Sasiadek and Hartana, 2000), Particle Filter (Jain et al, 2011), and Conditional Random Fields (CRF) (Xiao et al, 2015) are used for this purpose. Finally, HAVs apply a combination of mapping and localisation, subsequently using planning algorithms to navigate.…”
Section: Sensementioning
confidence: 99%
“…Multi-sensor fusion can be used for more accurate perception, combining information from multiple sensors (Yeong et al, 2021). Algorithms such as Kalman filter (Sasiadek and Hartana, 2000), Particle Filter (Jain et al, 2011), and Conditional Random Fields (CRF) (Xiao et al, 2015) are used for this purpose. Finally, HAVs apply a combination of mapping and localisation, subsequently using planning algorithms to navigate.…”
Section: Sensementioning
confidence: 99%
“…A common approach to fuse proprioceptive sensors and RFID data employs sequential estimators. Typically, two main steps can be recognized: a prediction step and an update step [9]. To better understand, we can imagine tracking a vehicle moving on a straight line (x-axis), as shown in Fig.…”
Section: Rfid Sensor-fusion With Proprioceptive Sensorsmentioning
confidence: 99%
“…As an alternative, exteroceptive sensors, such as cameras [4], sonars [5], laser range finders (LRFs) [6], or Radio-Frequency (RF) systems [7] can be adopted to circumvent the drift of the estimated trajectory, which is typical of the dead-reckoning approach. To increase the localization accuracy, widespread solutions foresee to combine data from both proprioceptive sensors and exteroceptive ones [8], [9] through sensor-fusion approaches, also known as multisensor data fusion, by means of several different estimation algorithms.…”
Section: Introductionmentioning
confidence: 99%
“…Dentro de los sistemas estocásticos, la técnica denominada filtro de Kalman, es el método más utilizado para la integración de datos de múltiples sensores [63], dado que permite obtener una estimación de mínima varianza del estado de la variable que se está analizando [64], una variación de este sistema es el filtro de Kalman extendido, el cual posibilita trabajar con sistemas no lineales, donde se busca obtener una aproximación más certera de las medidas de los sensores [65,66]. Otro de los filtros que es utilizado es el llamado filtro de partículas, el cual permite resolver dificultades de incertidumbre y no linealidad en las medidas obtenidas [67]; para otras investigaciones se hizo uso de estrategias de modelos probabilísticos, dado que se puede incorporar la incertidumbre de la medida que se ha tomado [68], permitiendo calcular una distribución de probabilidad sobre lo que tal vez fuera el caso en el mundo real, en lugar de generar un único valor.…”
Section: Estrategias De Adquisición De Información De Los Sensoresunclassified