Chemical vapour deposition (CVD) is an important technique that uses volatile precursors to produce thin film deposits on an exposed substrate, having the capability to generate different types of nanostructures (e.g. nanoparticles, nanotubes, nanofibers or nanocomposites) as catalytic materials. The environmental hazard of volatile organic compounds (VOCs) requires efficient methods to reduce their emission into the atmosphere, due to their high potential to cause severe health issues, along with their extended spread in the environment. Catalytic combustion proves to be one of the most effective means for the abatement of VOCs, employing different catalysts, such as noble metals or non-noble metal oxides, to facilitate the oxidation process of the pollutants. These catalysts can be prepared through various methods as multiple steps wet processes or CVD techniques, indicating the superiority of the CVD-prepared catalysts compared to those prepared using the former type of process, due to the ability to achieve high dispersion of the active material, together with enhanced textural and morphological properties. This paper aims to present the various CVD techniques employed in the fabrication of different catalysts with the possibility of generating materials at nano-scale for use in numerous reactions, mostly in combustion process for VOCs decomposition.