Fourier transform infrared and Raman microspectroscopy are currently being developed as new methods for the rapid identification of clinically relevant microorganisms. These methods involve measuring spectra from microcolonies which have been cultured for as little as 6 h, followed by the nonsubjective identification of microorganisms through the use of multivariate statistical analyses. To examine the biological heterogeneity of microorganism growth which is reflected in the spectra, measurements were acquired from various positions within (micro)colonies cultured for 6, 12, and 24 h. The studies reveal that there is little spectral variance in 6-h microcolonies. In contrast, the 12-and 24-h cultures exhibited a significant amount of heterogeneity. Hierarchical cluster analysis of the spectra from the various positions and depths reveals the presence of different layers in the colonies. Further analysis indicates that spectra acquired from the surface of the colonies exhibit higher levels of glycogen than do the deeper layers of the colony. Additionally, the spectra from the deeper layers present with higher RNA levels than the surface layers. Therefore, the 6-h colonies with their limited heterogeneity are more suitable for inclusion in a spectral database to be used for classification purposes. These results also demonstrate that vibrational spectroscopic techniques can be useful tools for studying the nature of colony development and biofilm formation.In recent years, there has been much effort invested into the development of new techniques for the identification of microorganisms. Many of these methods are aimed at providing the clinician with more rapid identification of the microorganism responsible for infection in order to begin the appropriate course of antimicrobial treatment (1,9,15,21,27,31,44,51). The emergence of these novel methods reflects the rise in drug-resistant microorganisms, which requires that antimicrobial treatment be more effectively managed (2, 12, 28, 52). Among the new methods are those based on vibrational spectroscopic techniques, namely Fourier transform infrared (FT-IR) and Raman spectroscopies. Vibrational spectroscopic methods are reagentless procedures in which there is no need to add dyes or labels for spectral measurement. These nondestructive techniques are based on the absorption (FT-IR) or scattering (Raman) of light directed onto a sample. The amount of light absorbed or scattered depends on the molecules found within the sample and the environment in which these molecules are found. With these highly sensitive techniques, the frequency of light in the resulting spectrum provides biochemical information regarding the molecular composition and molecular structure of and molecular interaction in cells and tissues (24,55). Raman and infrared spectroscopies are complementary techniques which together can provide a more complete impression of the biochemical information within a sample. Furthermore, these two methods differ such that each is capable of providing informatio...