C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates nance analysis revealed unexpected high molecular affinity constants for the CBD-ligand interactions, corresponding to nanomolar affinities. In conclusion, we show that the CBDs are responsible for targeting the phage endolysins to their substrates and function to confer recognition specificity on the proteins. As the CBD sequences contain no repeats and lack all known sequence motifs for anchoring of proteins to the bacterial cell, we conclude that they use unique structural motifs for specific association with the surface of Gram-positive bacteria.
The Bacillus cereus group comprises the four valid species Bacillus cereus, Bacillus mycoides, Bacillus fhuringiensis and Bacillus anthracis. Some isolates of B. cereus are known to be psychrotolerant (growth a t 7 O C or below). Here, specific sequence differences are described between the 165 rDNA, the 235 rDNA, the 165-235 rDNA spacer region and the genes of the major cold-shock protein homologue cspA in a variety of psychrotolerant and mesophilic B. cereus and B. mycoides strains. Randomly amplified polymorphic DNA analysis using three different primers clearly separated psychrotolerant strains of both species from the rest of the B. cereus group, as did inverse PCR patterns of the rDNA operons. These data strongly support a hitherto unrecognized fifth sub-group within the B. cereus species group comprising psychrotolerant, but not mesophilic, B. cereus strains. Despite the latter finding, the DNA sequences investigated exhibited a high degree of sequence similarity indicating a close relationship between the species of the B. cereus group. Considering the unusual importance of B. cereus in both food poisoning and food spoilage and to avoid merging all species of the group, a new species, Bacillus weihenstephanensis sp. nov., comprising psychrotolerant 'cereus' strains, is proposed. Isolates of the new species grow a t 4-7 "C but not a t 43 OC and can be identified rapidly using rDNA or cspA targeted PCR. The type strain is B. weihenstephanensis WSBC 10204T (= DSM 1182IT).
An in-depth polyphasic approach was applied to study the population structure of the human pathogen Bacillus cereus. To assess the intraspecific biodiversity of this species, which is the causative agent of gastrointestinal diseases, a total of 90 isolates from diverse geographical origin were studied by genetic [M13-PCR, random amplification of polymorphic DNA (RAPD), multilocus sequence typing (MLST)] and phenetic [Fourier transform Infrared (FTIR), protein profiling, biochemical assays] methods. The strain set included clinical strains, isolates from food remnants connected to outbreaks, as well as isolates from diverse food environments with a well documented strain history. The phenotypic and genotypic analysis of the compiled panel of strains illustrated a considerable diversity among B. cereus connected to diarrhoeal syndrome and other non-emetic food strains, but a very low diversity among emetic isolates. Using all typing methods, cluster analysis revealed a single, distinct cluster of emetic B. cereus strains. The isolates belonging to this cluster were neither able to degrade starch nor could they ferment salicin; they did not possess the genes encoding haemolysin BL (Hbl) and showed only weak or no haemolysis. In contrast, haemolytic-enterotoxin-producing B. cereus strains showed a high degree of heterogeneity and were scattered over different clusters when different typing methods were applied. These data provide evidence for a clonal population structure of cereulide-producing emetic B. cereus and indicate that emetic strains represent a highly clonal complex within a potentially panmictic or weakly clonal background population structure of the species. It may have originated only recently through acquisition of specific virulence factors such as the cereulide synthetase gene.Abbreviations: FTIR, Fourier transform Infrared; Hbl, haemolysin BL; MLST, multilocus sequence typing; Nhe, non-haemolytic enterotoxin; RAPD, random amplification of polymorphic DNA.The GenBank/EMBL/DDBJ accession numbers for the sequences of the internal gene fragments used for MLST and for the sporulation stage III AB genes reported in this paper are AY762151-AY762213 and AY578317-AY578349, respectively.
Bacillus cereus is the causative agent of two distinct forms of gastroenteritic disease connected to food-poisoning. It produces one emesis-causing toxin and three enterotoxins that elicit diarrhea. Due to changing lifestyles and eating habits, B. cereus is responsible for an increasing number of food-borne diseases in the industrial world. In the past, most studies concentrated on the diarrhoeal type of food-borne disease, while less attention has been given to the emetic type of the disease. The toxins involved in the diarrhoeal syndrome are well-known and detection methods are commercially available, whereas diagnostic methods for the emetic type of disease have been limited. Only recently, progress has been made in developing identification methods for emetic B. cereus and its corresponding toxin. We will summarize the data available for the emetic type of the disease and discuss some new insights in emetic strain characteristics, diagnosis, and toxin synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.