Background aims
To date there are only very few data available on the ligamentogenic differentiation capacity of mesenchymal stromal/progenitor cells (MSC) and anterior cruciate ligament (ACL) fibroblasts.
Methods
We describe the in vitro potential of MSC and ACL cells to undergo ligamentogenic differentiation upon transduction with adenoviral vectors encoding the human cDNA for bone morphogenetic protein (BMP) 12 and BMP13, also known as growth and differentiation factors (GDF) 6 and 7, respectively.
Results
Transgene expression for at least 14 days was confirmed by Western blot analyzes. After 21 days of cell culture within collagen type I hydrogels, histochemical (hematoxylin/eosin (H&E), Azan and van Gieson), immunohistochemical and polymerase chain reaction (PCR) analyzes of the genetically modified constructs of both cell types revealed elongated, viable fibroblast-like cells embedded in a ligament-like matrix rich in collagens, vimentin, fibronectin, decorin, elastin, scleraxis, tenascin, and tenomodulin.
Conclusions
It appears that both MSC and ACL fibroblasts are capable of ligamentogenic differentiation with these factors. This information may aid in the development of biologic approaches to repair and restore ACL after injury.