Efficient utilization of lignocellulosic
Miscanthus
biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected
Miscanthus
genotypes (
Miscanthus sinensis
,
Miscanthus sacchariflorus
,
Miscanthus
×
giganteus
,
Miscanthus sinensis
×
Miscanthus sacchariflorus
hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of
Miscanthus sinensis
that showed a higher hemicellulose/cellulose ratio. Lignin contents of
Miscanthus
stems were higher than those of
Miscanthus
leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but
Miscanthus
×
giganteus
showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes.
p
‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of
p
‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for
Miscanthus sinensis
.