The optimal concentrations of salts in medium for cell growth and the production of carboxymethylcellulase (CMCase) by a recombinant E. coli JM109/DL-3 were established using two statistical methods: orthogonal array method (OAM) and response surface method (RSM). The analysis of variance (ANOVA) of data based on OAM indicated that K2HPO4 gave maximum sum of square (S) and percentage contribution (P) for cell growth as well as production of CMCase. The optimal concentrations of K2HPO4, NaCl, MgSO4•7H2O, and (NH4)2SO4 in medium for cell growth extracted by Qualitek-4 (W32b) Software were 10.0, 1.0, 0.2, and 0.6 g/l, respectively, whereas those for the production of CMCase by E. coli JM109/DL-3 were 5.0, 1.0, 0.4, and 0.6 g/l. The analysis of variance (ANOVA) resulting from RSM indicated that a highly significant salt for cell growth was K2HPO4 ("probe>F" less than 0.0001), whereas K2HPO4 and MgSO4•7H2O were significant for the production of CMCase. The optimal concentrations of K2HPO4, NaCl, MgSO4•7H2O, and (NH4)2SO4 for cell growth extracted by Design Expert Software were 7.44, 1.08, 0.22, and 0.88 g/l, respectively, whereas those for production of CMCase were 5.84, 0.69, 0.28, and 0.54 g/l. The optimal concentrations of salts and their influences on cell growth and production of CMCase extracted by OAM were almost the same as those by RSM. Production of CMCase by a recombinant E. coli JM109/DL-3 under optimized concentration of salts was 1.93 times higher than that by Bacillus amyloliquifaciens DL-3.