Dois procedimentos para a redução de experimentos para o método split-plot foram investigados usando um conjunto de dados contendo 160 experimentos, consistindo de 80 duplicatas provenientes da otimização de um sistema contendo a mistura de água-acetona-N,N-dimetilformamida e os reagentes HCl, o-dianisidina e H 2 O 2 para a determinação de Cr(VI). A estabilidade dos coeficientes do modelo e as médias quadráticas da ANOVA são usadas como critério para julgar a eficiência dos procedimentos. Somente o procedimento que evita a possibilidade de se eliminar completamente uma replicata para um dado conjunto de condições das variáveis de processo parece ser praticável, uma vez que não resulta em perda de informação fundamental da modelagem. Seus valores das médias quadráticas da ANOVA permaneceram estáveis para reduções de até 30% das replicatas enquanto seus coeficientes dos modelos foram relativamente constantes para até 70% de redução das replicatas. Tendo em vista que um planejamento split-plot completo envolvendo variáveis de processo e de mistura requer um grande número de experimentos, a economia introduzida por planejamentos split-plot incompletos faz seu uso ser muito atraente.Two experiment reduction procedures for split-plot designs are investigated using a data set containing 160 experiments, consisting of 80 duplicate results for the optimization of a wateracetone-N,N-dimethylformamide mixture with HCl, o-dianisidine and H 2 O 2 reagent system for the analytical determination of Cr(VI). Stabilities of the model coefficients and ANOVA mean squares are used as quality criteria to judge the effectiveness of the procedures. Only the procedure that avoids the possibility of eliminating entire replicates for any given set of process variable conditions seems to be feasible, since it does not result in loss of valuable modeling information. Its mean square ANOVA values remain stable for up to a 30% replicate reduction whereas its model coefficients are relatively constant for even 70 % replicate reduction. Since complete split-plot designs involving both process and mixture variables require large numbers of experiments, the economy gained by performing incomplete split-plot designs makes their use more attractive.