Ambient exposure to particulate matter (PM) air pollution is known to have an adverse effect on public health worldwide. Rapid increase rates of economic and urbanization, industrial development, and environmental change in China have exacerbated the occurrence of air pollution. This study examines the temporal and spatial distribution of PM on national, regional and local scales in China during 2014–2016. The relationships between the PM2.5 concentration rising rate (PMRR) and meteorological parameters (wind speed and wind direction) are discussed. The dataset of Air Quality Index (AQI), PM10 (PM diameter < 10 μm ) and PM2.5 (PM diameter < 2.5 μm) were collected in 169, 369, and 367 cities in 2014, 2015, and 2016 over China, respectively. The results show that the air quality has been generally improved on the national scale, but deteriorated locally in areas such as the Feiwei Plain. The northwest China (NW) and Beijing-Tianjin-Hebei (BTH) regions are the worst areas of PM pollution, which are mainly manifested by the excessive PM10 caused by blowing dust in spring in NW and the intensive emissions of PM2.5 in winter in BTH. With the classified seven geographic regions, we demonstrate the significant spatial difference and seasonal variation of PM concentration and PM2.5/PM10 ratio, which indicate different emission sources. Furthermore, the dynamic analysis of the PM2.5 pollution process in 11 large urban cities shows dramatic effects of wind speed and wind direction on the PM2.5 loadings.