Recently, we have obtained Ricci curvature inequalities for skew CR-warped product submanifolds in the framework of complex space form. By the application of Bochner’s formula on these inequalities, we show that, under certain conditions, the base of these submanifolds is isometric to the Euclidean space. Furthermore, we study the impact of some differential equations on skew CR-warped product submanifolds and prove that, under some geometric conditions, the base is isometric to a special type of warped product.