2021
DOI: 10.13189/ms.2021.090112
|View full text |Cite
|
Sign up to set email alerts
|

Applications of the Differential Transformation Method and Multi-Step Differential Transformation Method to Solve a Rotavirus Epidemic Model

Abstract: Epidemic models are essential in understanding the transmission dynamics of diseases. These models are often formulated using differential equations. A variety of methods, which includes approximate, exact and purely numerical, are often used to find the solutions of the differential equations. However, most of these methods are computationally intensive or require symbolic computations. This article presents the Differential Transformation Method (DTM) and Multi-Step Differential Transformation Method (MSDTM)… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 14 publications
0
2
0
1
Order By: Relevance
“…Pada [6], metode ini digunakan untuk menyelesaikan model epidemi SEIR. Beberapa penulis lain yang telah menggunakan MTD dalam menyelesaikan model epidemiologi antara lain [7], [8], [9], dan [10]. MTD memiliki keuntungan karena relatif mudah untuk dipahami dan diimplementasikan.…”
Section: Pendahuluanunclassified
“…Pada [6], metode ini digunakan untuk menyelesaikan model epidemi SEIR. Beberapa penulis lain yang telah menggunakan MTD dalam menyelesaikan model epidemiologi antara lain [7], [8], [9], dan [10]. MTD memiliki keuntungan karena relatif mudah untuk dipahami dan diimplementasikan.…”
Section: Pendahuluanunclassified
“…The use of differential equations to model the transmission dynamics of infectious disease can be traced back to 1970 when Daniel Bernoulli justified the use of inoculation to curb the spread of smallpox (Dietz and Heesterbeek, 2002;Foppa, 2017). These models are usually nonlinear (Peter et al, 2020;Gu et al, 2023;Akinyemi et al, 2023;Kambali et al, 2023;Ochi et al, 2023) and are difficult to obtain their exact solution (Onwubuoya et al, 2018b;Riyapan et al, 2021;ur Rehman et al, 2023). Thus, numerical methods are used to obtain approximate solutions.…”
Section: Introductionmentioning
confidence: 99%
“…The DTM procedure is one of the many numerical methods for systems of ODEs [13], [14], which uses polynomial for approximation to obtain the exact solution representation that is differentiable. An extension of DTM is that the MSDTM procedure [15], [16], [17] is subdivided into intervals of equal step size, and while Runge-Kutta obtains numerical computation for comparative analysis.…”
Section: Introductionmentioning
confidence: 99%