The aim is to investigate the genomic characterization of uterine sarcoma for rAd-p53 (Gendicine Ò) combined with chemotherapy treatment. We recently published an article on 12 cases of uterine sarcomas, which were treated with rAd-p53 combined with chemotherapy. We found that rAd-p53 combined with chemotherapy is effective for various uterine sarcomas. Pretreatment pathological specimens of four uterine sarcoma patients were collected from the above recent clinical research and numbered 1-4A/B. Tumor samples were subjected to targeted sequencing by using a 416 genes panel. We profiled the mutation spectrum and tumor mutation burden in the tumors, identified mutated genes, and explored their gene function. We also verified the p53 protein expression using immunohistochemistry. We identified a total of 30 mutated genes that were found from the next-generation sequencing test results. The average number of mutated genes was up to seven in the five samples. TP53 gene was mutated in two of the four patients, No. 1 and No. 4B. They are c.C833G (p.P278R) missense mutation and a point mutation (C141*) that result in a premature stop codon. We did not find a mutated TP53 gene in the other two cases, but we identified mutated genes, including CREBBP, LYN, CDKN2A, and JAK2, which were located upstream of the TP53 gene; they may have an impact on TP53. We also identified 11 additional genes which are involved in p53-related signaling pathways or have interaction with p53. Compared to solid tumor mutational burden (TMB) distribution, none of their TMB was ranking in the top 25%. Mutant p53 protein expression was positive in two specimens. Our results demonstrated that the TP53 signaling pathway plays an important role in uterine sarcoma tumorigenesis. TP53 and the upstream genes such as CREBBP, LYN, CDKN2A, and JAK2 may be involved in the genomic characterization for rAd-p53 (Gendicine) combined with chemotherapy in uterine sarcoma. Besides, the average amount of mutated genes from every patient is large.