BackgroundClonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome.ResultsWe combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines.ConclusionsThis study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control.
Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0166-1) contains supplementary material, which is available to authorized users.
Clonorchis sinensis (C. sinensis), an important food-borne parasite that inhabits the intrahepatic bile duct and causes clonorchiasis, is of interest to both the public health field and the scientific research community. To learn more about the migration, parasitism and pathogenesis of C. sinensis at the molecular level, the present study developed an upgraded genomic assembly and annotation by sequencing paired-end and mate-paired libraries. We also performed transcriptome sequence analyses on multiple C. sinensis tissues (sucker, muscle, ovary and testis). Genes encoding molecules involved in responses to stimuli and muscle-related development were abundantly expressed in the oral sucker. Compared with other species, genes encoding molecules that facilitate the recognition and transport of cholesterol were observed in high copy numbers in the genome and were highly expressed in the oral sucker. Genes encoding transporters for fatty acids, glucose, amino acids and oxygen were also highly expressed, along with other molecules involved in metabolizing these substrates. All genes involved in energy metabolism pathways, including the β-oxidation of fatty acids, the citrate cycle, oxidative phosphorylation, and fumarate reduction, were expressed in the adults. Finally, we also provide valuable insights into the mechanism underlying the process of pathogenesis by characterizing the secretome of C. sinensis. The characterization and elaborate analysis of the upgraded genome and the tissue transcriptomes not only form a detailed and fundamental C. sinensis resource but also provide novel insights into the physiology and pathogenesis of C. sinensis. We anticipate that this work will aid the development of innovative strategies for the prevention and control of clonorchiasis.
BackgroundChemokine (C-X-C motif) ligand 13 (CXCL13) was known as a selective chemotaxis for B cells, a product of follicular helper CD4+T cells (TFH) and a contributor to tertiary lymphoid structures (TLS). Although secretion and function of CXCL13 produced by TFH have been deeply explored, the immune function and prognostic significance of CXCL13 secreted by CD8+T cells still remain unrevealed. This study aims to investigate the clinical merit of CXCL13+CD8+T cells in clear cell renal cell carcinoma (ccRCC).MethodsWe analyzed prognostic value and immune contexture that associated with CXCL13+CD8+T cells infiltration level in a total of 755 patients from Zhongshan Hospital cohort (n=223) and The Cancer Genome Atlas cohort (n=532). In vitro analyses were conducted on 42 samples of resected tumor tissue from Zhongshan Hospital in order to detect the immune status of CXCL13+CD8+T cells and total CD8+T cells. Immunohistochemistry (IHC) and flow cytometry were applied to characterize immune cells and portray the tumor microenvironment (TME) in ccRCC.ResultsIntratumoral CXCL13+CD8+T cells abundance was associated with inferior overall survival and disease-free survival. CXCL13+CD8+T cells possessed higher level of immune checkpoints like programmed cell-death protein 1 (PD-1), T-cell immunoglobulin mucin 3 (Tim-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), higher Ki-67 expression and lower tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) expression. Total CD8+T cells in high-level CXCL13+CD8+T cells infiltration subgroup exhibited elevated exhausted markers (PD-1, Tim-3, TIGIT) and descended activated markers (TNF-α, IFN-γ) without quantity variance. Furthermore, the abundance of intratumoral CXCL13+CD8+T cell was correlated with immunoevasive TME accompanied by increased T helper 2 cells, tumor-associated macrophages, Foxp3+ regulatory T cells, TLS and decreased natural killer cells, GZMB+ cells.ConclusionsIntratumoral CXCL13+CD8+T cells infiltration indicated inferior clinical outcome in patients with ccRCC. CXCL13+CD8+T cells possessed increased exhausted markers, decreased effector molecules and better proliferation ability. CXCL13+CD8+T cells abundance impaired total CD8+T cells’ immune function. Intratumoral CXCL13+CD8+T cells abundance was associated with immunoevasive contexture. The abundance of CXCL13+CD8+T cells was an independent prognosticator and a potential immunotherapeutic target marker for ccRCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.