The key intermediate in the synthesis of dorzolamide, (4S,6S)-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4-ol-7,7-dioxide, can be obtained in the diastereoisomerically pure form in two straightforward steps starting from diastereoisomeric mixtures of cis/trans-(6S)- 6-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4-yl acetate, regardless of their ratio. The reaction of crucial importance in this scheme is a remarkably stereoselective solvolysis of the acetate ester in an acetone/phosphate buffer mixture as the solvent system. Investigation of this so far unrecognized stereoselective reaction reveals that it proceeds via an S N 1-like pathway as indicated by the correlation of the solvolysis rate constants with the Y OTs values of different solvent mixtures and by trapping of the reaction intermediate with sodium azide. The structure of (4S,6S)-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4ol-7,7-dioxide was confirmed by single-crystal X-ray analysis.