2020
DOI: 10.4995/raet.2020.13787
|View full text |Cite
|
Sign up to set email alerts
|

Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria)

Abstract: <p>The mapping of urban areas mostly presents a big difficulty, particularly, in arid and semi-arid environments. For that reason, in this research, we expect to increase built up accuracy mapping for Bordj Bou Arreridj city in semi-arid regions (North-East Algeria) by focusing on the identification of appropriate combination of the remotely sensed spectral indices. The study applies the ‘k–means’ classifier. In this regard, four spectral indexes were selected, namely normalized difference tillage index … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 22 publications
(14 citation statements)
references
References 41 publications
0
3
0
3
Order By: Relevance
“…ISODATA is an unsupervised classification algorithm that has also been successfully applied to classify grayscale images into ISA and non-ISA classes [39], [40]. We used ISODATA to classify the index images into several clusters and merge the derived clusters into pervious and impervious surfaces.…”
Section: ) Isodata Classification Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…ISODATA is an unsupervised classification algorithm that has also been successfully applied to classify grayscale images into ISA and non-ISA classes [39], [40]. We used ISODATA to classify the index images into several clusters and merge the derived clusters into pervious and impervious surfaces.…”
Section: ) Isodata Classification Methodsmentioning
confidence: 99%
“…To generate an impervious surface thematic map for spatial and quantitative analysis, the calculated index images need to be reclassified as either impervious or pervious. Commonly used methods include thresholding methods [18], [37], [38] and unsupervised classification methods [39], [40]. It is widely acknowledged that the selection of binary algorithms may have an influence on the accuracy of ISA extraction [38], [41].…”
Section: Introductionmentioning
confidence: 99%
“…ISODATA is an unsupervised classification algorithm that has also been well applied to classify into ISA and pervious surface area (PSA) classes [5], [6]. Impervious surface threshold falls in the interval [0.0913, 0.1289].…”
Section: Isodata Classificationmentioning
confidence: 99%
“…Con estos datos podríamos disponer de la superficie construida de la zona urbana, sin embargo, en el caso de Guanabacoa la única cartografía es la proporcionada por OpenStreetMap que, para esta zona urbana, únicamente dispone de los polígonos de algunos edificios, insuficientes para poder establecer el área edificada. Otra opción sería establecer el área construida mediante la clasificación de las imágenes de satélite (Bramhe et al, 2018;Rouibah y Belabbas, 2020), aunque con la resolución de las imágenes Sentinel-2 podría diferenciarse únicamente entre zona construida, vegetación y masas de agua del municipio. En Guanabacoa hemos utilizado la capa de datos con el trazado de las calles de OpenStreetMap y las ortoimágenes para generar un entramado urbano formado principalmente por las manzanas con algunas subdivisiones de las mismas cuando la tipología de los edificios lo ha requerido.…”
Section: Determinación De La Superficie De Tejados Disponibleunclassified