2020
DOI: 10.17816/kmj2020-232
|View full text |Cite
|
Sign up to set email alerts
|

Approaches to antithrombotic modification of vascular implants

Abstract: Vascular implants in contact with blood must have high thrombotic resistance. However, in some cases, their implantation is associated with thrombosis and subsequent impaired patency of the blood vessel. Most often, this problem affects implants intended for reconstruction of small diameter vessels, which is associated with hemodynamic features in this part of the bloodstream. These include blood vessel prostheses, tissue-engineered vascular grafts, and endovascular stents. The features of the implant material… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 46 publications
0
2
0
Order By: Relevance
“…Most often, the risk of thrombus formation is higher in implants intended for the reconstruction of small-diameter vessels, which is associated with the hemodynamics and rheology in this part of the bloodstream. An increase in thrombotic resistance of vascular implants is achievable by modifying their inner surface with antiplatelet agents and anticoagulants [ 19 ].…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Most often, the risk of thrombus formation is higher in implants intended for the reconstruction of small-diameter vessels, which is associated with the hemodynamics and rheology in this part of the bloodstream. An increase in thrombotic resistance of vascular implants is achievable by modifying their inner surface with antiplatelet agents and anticoagulants [ 19 ].…”
Section: Discussionmentioning
confidence: 99%
“…However, there is a problem to create optimal combinations of the given materials; it is necessary to evaluate the structure of the prosthesis surface (which often imitates the natural extracellular matrix) for its ability to form a vascular tissue. These factors can reduce the thrombotic resistance of newly created structures and call for enhancing the anti-thrombogenic qualities of such implants [ 19 ].…”
Section: Discussionmentioning
confidence: 99%