Abstract:Causality is the most important topic in the history of western science, and since the beginning of the statistical paradigm, its meaning has been reconceptualized many times. Causality entered into the realm of multi-causal and statistical scenarios some centuries ago. Despite widespread critics, today deep learning and machine learning advances are not weakening causality but are creating a new way of finding correlations between indirect factors. This process makes it possible for us to talk about approxima… Show more
“…Does it mean that the classic GOFAI will again dominate the research of the next decades? Although all the current challenges indicate that the next step will require the combination of symbolic and statistical AI, always having in mind the situated nature of cognitive systems [2][3][4], quick successes of Deep Learning are blocking such complex attempts.…”
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
“…Does it mean that the classic GOFAI will again dominate the research of the next decades? Although all the current challenges indicate that the next step will require the combination of symbolic and statistical AI, always having in mind the situated nature of cognitive systems [2][3][4], quick successes of Deep Learning are blocking such complex attempts.…”
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.