To carry out a realistic simulation of earthquake strong ground motion for applied studies, one needs an earthquake fault/source simulator that can integrate most relevant features of observed earthquake ruptures. A procedure of this kind is proposed that creates a broadband kinematic source model. At lower frequencies, the source is described as propagating slip pulse with locally variable velocity. The final slip is assumed to be a twodimensional (2D) random function. At higher frequencies, radiation from the same running strip is assumed to be random and incoherent in space. The model is discretized in space as a grid of point subsources with certain time histories. At lower frequencies, a realistic shape of source spectrum is generated implicitly by simulated kinematics of slip pulse propagation. At higher frequencies, the original approach is used to generate signals with spectra that plausibly approximate the prescribed smooth far-field source spectrum. This spectrum is set on the basis of the assumedly known regional empirical spectral scaling law, and subsource moment rate time histories are conditioned so as to fit this expected spectrum. For the random function that describes final slip over the fault area, lognormal probability distribution of amplitudes is assumed, on the basis of exploratory analysis of inverted slip distributions. Similarly, random functions that describe local slip rate time histories are assumed to have lognormal distribution of envelope amplitudes. In this way one can effectively emulate expressed ''asperities'' of final slip and occasional occurrence of large spikes on near-source accelerograms. A special procedure is proposed to simulate the spatial coherence of high-frequency fault motion. This approach permits the simulation of fault motion plausibly at high spatial resolution, fulfilling the prerequisite for simulation of strong motion in the vicinity of a fault. A particular realization (sample) of a source created in a simulation run depends on several random seeds, and also on a considerable number of parameters. Their values can be selected so as to take into account expected source features; they can also be perturbed to examine the source-related component of uncertainty of strong motion. The proposed approach to earthquake source specification is well adapted to the study of deterministic seismic hazard: it may be used for simulation of individual scenario events, or suites of such events, as well as for analysis of uncertainty for expected ground motion parameters from a particular class of events. Examples are given of application of the proposed approach to strong motion simulations and related uncertainty estimation.