Through the Unregulated Contaminant Monitoring Rule (UCMR), the Environmental Protection Agency monitors selected unregulated drinking water contaminants of potential concern. While contaminants listed in the UCMR are monitored, they do not have associated health-based standards, so no action is required following detection. Given evolving understanding of incidence and the lack of numeric standards, previous examinations of health implications of drinking water generally only assess impacts of regulated contaminants. Little research has examined associations between unregulated contaminants and fetal health. This study individually assesses whether drinking water contaminants monitored under UCMR 2 and, with a separate analysis, UCMR 3, which occurred during the monitoring years 2008–2010 and 2013–2015 respectively, are associated with fetal health outcomes, including low birth weight (LBW), term-low birth weight (tLBW), and preterm birth (PTB) in Virginia. Singleton births (n = 435,449) that occurred in Virginia during UCMR 2 and UCMR 3 were assigned to corresponding estimated water service areas (n = 435,449). Contaminant occurrence data were acquired from the National Contaminant Occurrence Database, with exposure defined at the estimated service area level to limit exposure misclassification. Logistic regression models for each birth outcome assessed potential associations with unregulated drinking water contaminants. Within UCMR 2, N-Nitroso-dimethylamine was positively associated with PTB (OR = 1.08; 95% CI: 1.02, 1.14, P = 0.01). Molybdenum (OR = 0.92; 95% CI: 0.87, 0.97, P = 0.0) and vanadium (OR = 0.96; 95% CI: 0.92, 1.00, P = 0.04), monitored under UCMR 3, were negatively associated with LBW. Molybdenum was also negatively associated (OR = 0.90; 95% CI: 0.82, 0.99, P = 0.03) with tLBW, though chlorodifluoromethane (HCFC-22) was positively associated (OR 1.18; 95% CI: 1.01, 1.37, P = 0.03) with tLBW. These findings indicate that unregulated drinking water contaminants may pose risks to fetal health and demonstrate the potential to link existing health data with monitoring data when considering drinking water regulatory determinations at the national scale.