One of the problems in the development of multi-robotic systems is the safe navigation of a group of robots. To solve it, the restrictions imposed by the structural elements of its agents are determined. The article presents a multi-robotic system consisting of parallel and serial robots installed on mobile platforms. The parallel robot is made based on a tripod with the ability to rotate the robot’s base relative to the horizontal axis. The analysis of its working and technological area is carried out, taking into account singularity zones. The developed algorithms for determining the workspaces are based on deterministic methods for approximating the set of solutions to systems of nonlinear inequalities. In this case, restrictions in spaces of different coordinates are presented in the form of n-dimensional boxes. Approaches to solving two problems are proposed to determine the possible intersection of links for the collaborative performance of tasks by a multi-robotic system. The first task is to determine the intersection of the links for the given positions and the relative position of the manipulators. The second is in determining the minimum distance between the technological areas of manipulators, which consist of the workspace and all possible positions of the intermediate links.