Aquaporins facilitate the passive transport of water, solutes, or ions across biological membranes. They are implicated in diverse pathologies including brain edema following stroke or trauma, epilepsy, cancer cell migration and tumor angiogenesis, metabolic disorders, and inflammation. Despite this, there is no aquaporin-targeted drug in the clinic and aquaporins have been perceived to be intrinsically nondruggable targets. Here we challenge this idea, as viable routes to inhibition of aquaporin function have recently been identified, including targeting their regulation or their roles as channels for unexpected substrates. Identifying new drug development frameworks for conditions associated with disrupted water and solute homeostasis will meet the urgent, unmet clinical need of millions of patients for whom no pharmacological interventions are available.