Highlights d Hypoxia triggers an increase in AQP4-mediated flux of water into astrocytes d Translocation of AQP4 to the astrocyte cell surface drives increased water flux d AQP4 cell-surface localization is mediated by a CaM-and PKA-dependent mechanism d Inhibition of AQP4 localization with the licensed drug TFP halts CNS edema in rats
Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Background: The water channel protein aquaporin 4 (AQP4) controls water permeability of the blood-brain barrier.Results: Hypotonicity induces rapid relocalization of AQP4 in a calcium-, calmodulin-, and kinase-dependent manner.Conclusion: AQP4 can be relocalized between the cell membrane and intracellular compartments.Significance: Pharmacological modulation of AQP4 membrane localization could provide a new approach to treating brain edema.
BACKGROUND: Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis.
SCOPE OF REVIEW:AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance.
MAJOR CONCLUSIONS:As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation.
GENERAL SIGNIFICANCE:Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.