The epidemic associated with the new Sars-CoV-2 coronavirus has affected almost all countries of the world and no reliable treatment for this infection exists yet. Many laboratories in the world are currently conducting intensive experimental and theoretical/in silico studies to find effective drugs specific for this disease (COVID-19), but unfortunately, it may take a long time before new drugs appear in the clinical practice. One of the currently widely accepted approaches for finding active compounds is based on the possibility of using existing drugs approved by government medical organizations (as the FDA). Their choice is based on screening, based on the use of computer models that evaluate the specific binding (energy minimization) of such drugs to target molecules that are important for the life cycle. Thus, a few well-known antiviral drugs against HIV, hepatitis C and others selected on this basis exerted an antiviral effect in vitro, but their real effectiveness was far from expected. It should be emphasized that the severe clinical manifestation of the disease is an acute respiratory distress syndrome, mediated by oxidative stress and an aggressive immune attack on its own cells. In this regard, the use of compounds with high antioxidant activity could have advantages both prophylactically and medically. There is a huge range of natural compounds, including official and traditional medicine, which represent valuable unlimited potential for COVID-19 therapy, the advantage of such compounds in their low toxicity. In this review, we tried to focus on the clinical and pharmacological properties of natural substances, mainly flavonoids, which can become promising drugs for the treatment and prevention of COVID-19. The review includes information on possible virus targets and antiviral drugs. Much attention is paid to the question of inhibition of viral activity. Based on published data, including structural features of various compounds, a prediction is made about the prospects of using these compounds as inhibitors of viral activity, as well as anti-inflammatory drugs for the treatment of COVID-19. An important step in the analysis of compounds was the study of the possibility of their interaction with cellular targets of the virus, as well as the ability to bind to the proteins of the Sars-CoV-2 virus itself.