Atmospheric aerosols have important role in the biogeochemistry and transportation of metals in the atmosphere. On a mass basis, so-called trace metals represent a relatively small proportion of the atmospheric aerosol (generally less than 1%). Among them are transition metals (TM) (e.g. vanadium, chromium, manganese, iron, cobalt, nickel, copper, etc.), which have several oxidation states, and thus can participate in many important atmospheric redox reactions. Field measurements provide strong evidence that TM are common components in aerosol particles as well as in atmospheric liquid water [1][2][3][4][5].The concentrations of trace metals in atmospheric aerosols are a function of their sources. Natural emissions of trace metals result from different processes acting on crustal minerals (e.g. erosion, surface winds and volcanic eruptions), as well as from natural burning and from the oceans. On a global scale, resuspended surface dusts make a large contribution to the total natural emission of trace metals to the atmosphere (e.g. more than 50% of Cr, Mn and V, and more than 20% of Cu, Mo, Ni, Pb, Sb and Zn), whereas volcanism presumably generates about 20% of Cd, Hg, As, Cr, Cu, Ni, Pb and Sb [6]. Sea-salt aerosols generated by spray and wave action may contribute to about 10% of total trace metals emissions. Biomass combustion can contribute to emissions of Cu, Pb and Zn [7]. The predominant anthropogenic sources are due to high-temperature processes, biomass burning, fossil-fuel combustion, industrial activity, incineration, etc. Anthropogenic high-temperature processes result in the release of volatile metals as vapours forming particles by condensation or gas-to-particle reactions. Combustion of fossil fuels is the most important anthropogenic source of atmospheric Be, Co, Hg, Mo, Ni, Sb, Se, Sn and V; it also contributes to emissions of As, Cr, Cu, Mn and Zn [6]. Industrial metallurgical processes produce the largest emissions of As, Cd, Cu, Ni and Zn. Exhaust emissions from gasoline-and diesel-fuelled vehicles contribute to atmospheric Pb, Fe, Cu, Zn, Ni and Cd, while tyre-rubber abrasion to Zn [8]. In the last decade, the use of new automobile catalytic converters also contributes to the emissions of Pt, Pd and Rh [9, 10]. The composition of aerosols depends on the occurrence of metals in combustion processes and their volatility as well as on their amount produced by decomposition of continental and oceanic surfaces. Thus, the size distributions of different metals depend on the balance of different sources.Environmental Chemistry of Aerosols Edited by Ian Colbeck